FLAVONOIDS FROM THE SEEDS OF LONCHOCARPUS COSTARICENSIS

PETER G. WATERMAN and ELHADI N. MAHMOUD

Phytochemistry Research Laboratories, Department of Pharmacy (Pharmaceutical Chemistry), University of Strathclyde, Glasgow Gl 1XW, U.K.

(Received 3 July 1984)

Key Word Index—Lonchocarpus costaricensis; Leguminosae; β -hydroxychalcones; flavanones; flavanones.

Abstract—Seven flavonoids have been isolated from the seeds of *Lonchocarpus costaricensis* of which four appear to be novel. The new compounds have been identified as the β -hydroxychalcone demethylpraecansone-B and the flavanones 7-(3,3-dimethylallyloxy)-8-(3-hydroxy-3-methyl-trans-but-1-enyl)flavanone, 7-(3,3-dimethylallyloxy)-8-(3,3-dimethylallyl)-5-methoxyflavanone and 8-(3,3-dimethylallyl)-5,7-dimethoxyflavanone.

INTRODUCTION

Lonchocarpus costaricensis Pittier is one of several trees of that genus found in the Santa Rosa National Park in Costa Rica [1]. As part of a wider investigation of plant chemistry in relation to patterns of herbivory in the Park [2], we have analysed the seeds of this species. This has yielded seven flavonoids typical of Lonchocarpus and related genera. Four of the isolated compounds are reported for the first time.

RESULTS AND DISCUSSION

The powdered seeds were extracted with petrol (bp $60-80^{\circ}$). Column chromatography of the resulting concentrate followed, where necessary, by preparative circular TLC gave seven flavonoids, three of which were identified as ovalichalcone [3], obovatin methyl ether (1) [4] and isopongaflavone (2) [5]. The remaining four flavonoids appear to be novel and have been identified on the basis of spectral analysis as the β -hydroxychalcone (3)

$$R_1$$
 R_2 R_3
4 H $CH_2CH=C(Me)_2$ $CH\stackrel{\ddagger}{=}CHC(OH)Me_2$

5 OMe
$$CH_2CH = C(Me)_2$$
 $CH_2CH = C(Me)_2$

and the flavanones 4-6. The ¹³C NMR spectra of 1-6 have been recorded and are listed in Table 1.

The β -hydroxychalcone analysed for $C_{21}H_{20}O_5$. The ¹H NMR spectrum showed resonances typical of a 2,2dimethylpyran ring, an H-bonded 6'-hydroxy substituent, a methoxy group, two multiplets for an unsubstituted aromatic ring and two singlets (1H each). The more shielded singlet (δ 5.92) could be attributed to a single Aring proton and the other (δ 7.30) to the α -proton of the chalcone. These data suggested 3 or its isomer with a 4'-OMe substituent and the chromene between C-5' and C-6' and this was sustained by both the EI mass spectrum and the ¹³C NMR spectrum. An interesting feature of the ¹H NMR spectrum run in CDCl₃ was the rapid appearance of a second series of signals, the most obvious of which were singlets at $\delta 3.41$ (α -methylene) and $\delta 4.50$ (2'-OMe), due to the conversion of 3 to the diketo tautomer 7, which reached an approximately 50:50 equilibrium after 24 hr. The highly deshielded position of the methoxy resonance in 7 required its placement at C-2' where it would be influenced by the diketo side chain. ¹H NMR analysis of 3 in CCl₄ failed to show formation of the tautomer.

Compound 3 is closely allied to the β -oxygenated chalcones praecansone-A and -B reported from *Tephrosia* praecans [6]. On treatment with aluminium chloride praecansone-A was reported [6] to give the β -diketone 7 but both the structure shown and the ¹H NMR data reported for that product (run in CCl₄) agree with those recorded here for 3.

The first of the new flavanones analysed for $C_{25}H_{28}O_4$. The IR spectrum showed the presence of an aliphatic hydroxyl and the ¹H NMR spectrum a flavanone skeleton with an unsubstituted B-ring. For the A-ring an AB quartet (J=10 Hz) centred at $\delta 6.64$ and 7.78 indicated unsubstituted C-6 and C-5 and a series of signals typical of a 3,3-dimethylallyloxy unit which must be placed at C-7. The remaining C_5H_9O unit, to be placed at C-8, gave singlets at $\delta 1.38$ (6H) and 6.80 (2H) for equivalent methyl and olefinic protons. This suggested that the C-8 substituent was a 3-hydroxy-3-methyl-but-1-enyl unit in which H-1 and H-2 were equivalent. To confirm this, the

Table 1. 13C NMR chemical shift values of flavonoids from L. costaricensis*

Carbon No.	3	7	4	5	6	1	2
2 (β)	176.5	200.0	79.6	78.6	78.7	79.0	160.8
3 (α)	98.9	55.3	44.2	45.8	45.8	45.7	109.0
4 (C=O)	195.0	195.2	191.1	189.8	189.8	189.0	177.6
4a (1')	103.4	103.8	115.4ª	106.1	106.2	105.8	109.0
5 (2')	161.0 ^a	161.8a	128.5 ^b	161.1	161.1	160.0	154.0
6 (3′)	92.3	93.0	106.4	90.1	88.9	93.8	96.7
7 (4′)	163.4	163.4	162.7	162.7	163.3	162.2	160.2
8 (5')	104.9	106.1	114.2a	110.7	110.4	102.9	102.8
8a (6')	161.9a	162.7a	160.3	160.6	160.8	158.8	158.0
1'(1)	135.0†	137.9†	139.0°	139.4	139.4	139.0	131.9
2' (2)	129.7†	129.6†	125.8	125.9	125.9	125.9	125.9
3′ (3)	127.5†	128.9†	128.7	128.6	128.6	128.7	129.0
4' (4)	134.0†	132.9†	127.7 ^b	128.5	128.2	126.3a	131.2
5′ (5)	127.5†	128.9†	128.7	128.6	128.6	128.7	129.0
6' (6)	129.7†	129.6†	125.8	125.9	125.9	125.9	125.9
7,8-pyran							
$2 (Me)_2$	28.6	28.6				28.2/28.5	28.3
2	79.0	78.8				78.0	78.1
3	1162	116.5				116.0	115.3
4	126.6	126.6				128.5ª	127.6
7-O-prenyl							
1			65.9	65.3			
2			119.2	122.7			
3			138.4°	138.2			
3 (Me) ₂			18.3/25.7	18.3/25.7			
8-prenyl				***	21.0		
1			115.0	22.2	21.9		
2			143.0	119.4	122.6		
3			71.5	131.1	131.3		
3 (Me) ₂ OMe	56.7	56.2	29.2	17.7/25.8 56.1	17.7/25.8 55.7/56.1	56.2	56.5

^{*}Spectra run at 62.5 MHz in CDCl₃ with TMS as internal standard. Carbon numbers in parentheses refer to numbering for the chalcone nucleus. Identical superscripts within columns denote interchangeable signals.

[†]Tentative assignments.

flavanone was acetylated and the 1 H NMR spectrum rerun. In this case, the olefinic protons appeared as an AB quartet with J=18 Hz, confirming the *trans* nature of the double bond. Both 13 C NMR (Table 1) and EI mass spectral data supported the identification of this compound as 7 -(3,3-dimethylallyloxy)-8-(3-hydroxy-3-methyl-*trans*-but-1-enyl)flavanone (4).

The second flavanone analysed for C₂₆H₃₀O₄. The ¹H NMR spectrum again confirmed the presence of a flavanone, an unsubstituted B-ring and a 3,3-dimethylallyloxy unit. Further signals for a 3,3-dimethylallyl unit, a methoxy group and a single A-ring proton suggested structure 5. This was substantiated by the ¹³C NMR which showed shielded C-6 and 5-OMe resonances typical of 5-methoxy-7,8-disubstituted flavanones.

The final flavanone analysed for C₂₂H₂₄O₄ and gave a ¹H NMR spectrum identical to 5 except for the absence of signals for the 3,3-dimethylallyloxy unit and their replacement by the resonance of a second methoxy group. This compound must be assigned structure 6, the ¹³C signals for the two methoxy substituents at 55.7 and 56.1 ppm requiring that both have an adjacent carbon unsubstituted and thereby ruling out the alternative 6-prenyl compound. Surprisingly 6 appears to be novel.

The seven flavonoids isolated from L. costaricensis seeds are all simple 8-prenylated flavonoids. Both 3 and 4 have modifications typical of the Tephrosieae [7] but no isoflavonoids could be detected during this study.

EXPERIMENTAL

UV: MeOH. IR: KCl. ¹H NMR: in CDCl₃ at 90 MHz with TMS as internal standard. EIMS: 70 eV with direct probe insert at 120-140°. Petrol refers to bp 60-80° fraction. Mps are uncorr. *Plant material.* Seeds of *L. costaricensis* were collected in the Santa Rosa National Park, Costa Rica in 1983.

Extraction and separation. Ground seeds (420 g) were extracted with petrol, then CHCl₃, and finally MeOH. Concn of the petrol extract gave a brown oil, part of which was subjected to CC over silica gel. Elution with petrol containing 5% EtOAc gave 3 (290 mg). Elution with 10% EtOAc gave a mixture which was separated by prep. TLC (silica gel, solvent: petrol-EtOAc, 4:1) to give more 3 (20 mg) and ovalichalcone (19 mg). Elution with 25% EtOAc gave a mixture from which 1 (413 mg) was obtained by repeated recrystallization. Prep. TLC of the supernatant (silica gel, solvent: toluene-EtOAc-HOAc, 94:5:1) gave 4 (54 mg). Elution with 40% EtOAc gave a mixture separated by prep. TLC (silica gel, solvent: toluene-EtOAc-HOAc, 90:10:1) to give 5 (43 mg) followed by 6 (430 mg). Finally, elution with 70% EtOAc gave 2 (67 mg).

Demethylpraecansone-B (3). Yellow needles from petrol-EtOAc, mp 128–130° (lit. [6] 105–107°). Found: [M]⁺ 352.1317; $C_{21}H_{20}O_5$ requires: 352.1311. UV λ_{max} nm: 272, 295, 369. IR ν_{max} cm⁻¹: 1640, 1600, 1580, 1280. ¹H NMR: δ1.42 (6H, s, 2"-Me₂), 3 90 (3H, s, 2'-OMe), 5.45 (1H, d, J = 10 Hz, H-3"), 5.92 (1H, s, H-3'), 6.67 (1H, d, J = 10 Hz, H-4"), 7.30 (1H, s, H-α), 7.43 (3H, m, H-3, H-4, H-5), 7.85 (2H, m, H-2, H-6), 13.62 (1H, s, 6'-OH). ¹³C NMR: see Table 1. EIMS m/z (rel. int.): 352 [M]⁺ (66), 337 (64), 232 (4), 217 (100), 191 (27), 105 (27), 77 (20). On standing, a CDCl₃ solution of 3 formed an equilibrium mixture with 7 which showed the following NMR characteristics attributable to 7. ¹H NMR: δ1.42 (6H, s, 2"-Me₂), 3.41 (2H, s, CH₂-), 4.50 (3H, s, 2'-OMe), 5.44 (1H, d, J = 10 Hz, H-3"), 5.79 (1H, s, H-3'), 6.66 (1H, d, J = 10 Hz, H-4"), 7.43 (3H, m, H-3, H-4, H-5), 7.85 (2H, m, H-2, H-6), 13.92 (1H, s, 6'-OH). ¹³C NMR: see Table 1.

Ovalichalcone. Yellow needles from petrol-EtOAc, mp 117°

(lit. [3] $123-124^{\circ}$). Found: [M]⁺ 352.1669; $C_{22}H_{24}O_4$ requires: 352.1674. UV, IR, ¹H NMR in agreement with published data [3].

7-(3,3-Dimethylallyloxy)-8-(3-hydroxy-3-methyl-trans-but-1enyl/flavanone (4). Plates from petrol-EtOAc, mp 82°. Found: [M] + 392.1989; $C_{25}H_{28}O_4$ requires: 392.1987. UV λ_{max} nm: 259, 297, 345. IR $\nu_{\rm max}$ cm⁻¹: 3350, 1680, 1600, 1440. ¹H NMR: δ 1.38 $(6H, s, 3'''-Me_2), 1.77 (6H, s, 3''-Me_2), 2.89 (1H, dd, J = 18, 5 Hz,$ $H-3_{eq}$, 3.15 (1H, dd, J = 18, 12 Hz, $H-3_{av}$), 4.63 (2H, d, J = 7 Hz, H-1"), 5.45 (1H, t, J = 7 Hz, H-2"), 5.47 (1H, dd, J = 12, 5 Hz, H-2), 6.64 (1H, d, J = 10 Hz, H-6), 6.80 (2H, s, H-1", H-2"), 7.43 (5H, m, H-2'-H-6'), 7.82 (1H, d, J = 10 Hz, H-5). ¹³C NMR: see Table 1. EIMS m/z (rel. int.): 392 [M] + (6), 374 (37), 324 (17), 308 (17), 306 (78), 291 (72), 265 (33), 220 (23), 202 (40), 187 (61), 177 (25), 161 (37), 131 (28), 104 (46), 77 (31). Acetylation of 4 with acetic anhydride in C5H5N followed by normal work-up gave the acetate of 4, mp 66–68°. IR v_{max} cm $^{-1}$: 1740, 1680, 1600, 1460. 1 H NMR: δ 1.24 (6H, s, 3"-Me $_{2}$). 1 75, 1 79 (2 × 3H, 2 × s, 3"-Me $_{2}$), 1.92 (3H, s, Ac), 2.84 (1H, dd, J = 16, 5 Hz, H-3_{eq}), 3.08 (1H, dd, J= 16, 12 Hz, H-3_{av}), 4.63 (2H, d, J = 8 Hz, H-1"), 5.49 (1H, t, J= 8 Hz, H-2''), 5.51 (1H, dd, J = 12, 5 Hz, H-2), 6.64 (1H, d, J)= 10 Hz, H-6), 6.80, 7.31 (2H, ABq, J = 18 Hz, H-1", H-2"), 7.41 (5H, m, H-2'-H-6'), 7.81 (1H, d, J = 10 Hz, H-5).

Obovatin methyl ether (1). Prisms from Et₂O, mp 155° (lit. [4] 163°). Found: [M] * 336.1364; C₂₁H₂₀O₄ requires: 336.1361. UV, IR, ¹H NMR in agreement with published data [4]. ¹³C NMR: see Table 1.

7-(3,3-Dimethylallyloxy)-8-(3,3-dimethylallyl)-5-methoxyflavanone (5). Plates from petrol-EtOAc, mp 115-116°. Found: [M] $^+$ 406.2134; C₂₆H₃₀O₄ requires: 406.2144. UV λ_{\max} nm: 287, 319. IR ν_{\max} cm⁻¹: 1680, 1600, 1580. 1 H NMR: δ 1.60 (6H, s, 3"-Me₂), 1.80 (6H, s, 3"-Me₂), 2.79 (1H, dd, J=16, 5 Hz, H-3_{eq}), 3.02 (1H, dd, J=16, 12 Hz, H-3_{ax}), 3.30 (2H, d, J=8 Hz, H-1"), 3.90 (3H, s, 5-OMe), 4.60 (2H, d, J=8 Hz, H-1"), 5.19 (1H, t, J=8 Hz, H-2"), 5.46 (1H, dd, J=12, 5 Hz, H-2), 5.49 (1H, t, J=8 Hz, H-2"), 6.11 (1H, s, H-6), 7.40 (5H, m, H-2'-H-6'). 13 C NMR: see Table 1. EIMS m/z (rel. int.): 406 [M] $^+$ (99), 338 (70), 323 (13), 295 (22), 283 (17), 270 (10), 234 (97), 233 (34), 219 (26), 179 (56), 104 (13), 69 (100).

8-(3,3-Dimethylallyl)-5,7-dimethoxyflavanone (6). Needles from petrol-EtOAc, mp 98°. Found: [M]⁺ 352.1663; $C_{22}H_{24}O_4$ requires: 352.1674. UV $\lambda_{\rm max}$ nm: 289, 319. IR $\nu_{\rm max}$ cm⁻¹: 1680, 1600, 1580. ¹H NMR: δ 1.62 (6H, s, 3"-Me₂), 2.79 (1H, dd, J = 16, 5 Hz, H-3_{eq}), 3.01 (1H, dd; J = 16, 12 Hz, H-3_{ax}), 3.27 (2H, d, J = 8 Hz, H-1"), 3.89, 3.90 (2 × 3H, 2 × s, 5-OMe, 7-OMe), 5.14 (1H, t, J = 8 Hz, H-2"); 5.40 (1H, dd, J = 12, 5 Hz, H-2), 6.11 (1H, s, H-6), 7.41 (5H, m, H-2'-H-6'). ¹³C NMR: see Table 1 EIMS m/z (rel. int.): 352 [M]⁺ (95), 284 (10), 248 (36), 233 (46), 219 (17), 205 (24), 193 (42), 191 (50), 104 (5), 77 (8).

Isopongaflavone (2). Plates from CHCl₃-MeOH, mp 203° (lit. [5] 201-205°). UV, IR, ¹H NMR in agreement with published data [5]. ¹³C NMR: see Table 1.

Acknowledgements—One of us (E.N.M.) wishes to acknowledge the National Council for Research, Sudan, for the award of a scholarship Professor D. H. Janzen is thanked for the supply of plant material used in this study.

REFERENCES

- 1. Janzen, D. H. and Liesner, R. (1980) Brenesia 18, 15.
- Janzen, D. H. and Waterman, P. G. (1984) Biol. J. Linn. Soc. 21, 439.
- Gupta, R. K. and Krishnamurti, M. (1977) Phytochemistry 16, 293
- 4. Chen, Y. L., Wang, Y. S., Lin, Y. L., Munakata, K. and Ohta, K.

- (1978) Agric. Biol. Chem. 42, 2431.
- Khalid, S. A. and Waterman, P. G. (1981) Phytochemistry 20, 1719
- 6. Camele, G., Delle Monache, F., Delle Monache, G. and Marini
- Bettolo, G. B. (1980) Phytochemistry 19, 707.
- Gomes, C. M. R., Gottlieb, O. R., Marini Bettolo, G. B., Delle Monache, F. and Polhill, R. M. (1981) Biochem. Syst. Ecol. 9, 120